“HRV in the air”: What data from top gun pilots tells us about physical and mental workload?

Hornyik, J., Vada, G., Szabó, S., Dunai, P.

COL Sándor (Alex) András SZABÓ, MD, PhD, DAvMed (UK)
Chief Flight Surgeon of Hungarian Defence Forces

National University for Public Servants

GINOP-2.3.2-15-2016-00007

„in service of nation”
Military service job (especially flight) is really challenging for almost every soldier (including special forces):

the excessive energy demands (both physically and mentally) caused by special deployments and missions can provoke autonomic imbalance, POSSIBLE ROLE in acute incapacitation characterized by a hyperactive sympathetic system and a hypoactive parasympathetic system which finally can lead to premature aging and diseases.
AEROMEDICAL STRESSORS

accelerations - overloads

Ionizing and high frequency radiation

hypo / hyperthermia

noise

hypoxia

spatial disorientation

vibration

motion sickness
BEYOND THE CURVE … - INFORMATION WAR

- Basic flight
- Psychophysiological stress
- Capabilities / skills

WORKLOAD vs. Time (years)
ambulatory & real Holter ECG
hypoxic tolerance exams
orthostatic tolerance measurements
Pressure breathing tests
GYRO lab simulator
centrifuge runs
Aeromedical aspects

- accelerations
- psychic stress
- physical stress
- vibration

vegetative dystonia in CNS

change in perfusion

hypoxaemia

Neurohumoral activation

CO, ectopic activity, myocardium depression
Stress tolerance? Mind set vs. skill set?

Ground-based simulation

Psychology Cognitive test battery

Barochamber + Cognitive test battery

1st Lt. Lea ZOLNAI
1st female transport pilot on A319

Real Flight?

Virtual Reality?

Barochamber + Virtual Flight

LAB into REAL WORLD!
1. As a system – simple deployable
2. As a software – straightforward evaluation, edition of graphs with splitters
3. Durability - hypoxia, G loads (G sensor up to 9 Gz-s)
4. Simulation - +VR/VE technology –
5. Real flight – monitoring system (with synchronized data?)
6. Psychic trauma (ejection – regeneration/recovery?)
7. Pilot work related stress (mental or physiological)
The Canadian Armed Forces (CAF) is undertaking a major research initiative with the help of Firstbeat Lifestyle Assessment. **Dr. Julie Martin** of the Directorate Fitness Team is overseeing the study that will use *real-world measurement data* to investigate the physiological impact of participants’ daily life and will be used to better understand fitness related topics across the CAF. (2017. March)

FINNISH AIR FORCE – „hi-fi” simulator study

EU GINOP PROJECT: NIRS + VR

NIRS: Near Infrared Spectroscopy
VR: Virtual Reality
JAS-39 Aircrew Equipment Assembly

Type 116E Helmet

Oxygen Mask 127B

Survival Jacket 39

Anti-g Garment 97C/K

Gripen Boots

FIRSTBEAT
BODYGUARD2
FIRSTBEAT BODYGUARD2
GRIPEN fighter pilot’s working day

Flight sortie:
1. Low altitude target flight for interception 2x
2. Aerobatics up to 9 Gz

- Intensive recovery
- Conditioning effect
- Strongest stress response
- Training flight
- Light housework
FLIGHT:
1. Low altitude target flight for interception 2x
2. Aerobatics up to 9 Gz

FIRSTBEAT BODYGUARD2
GRIPEN fighter pilot’s working day – training flight sortie
FIRSTBEAT BODYGUARD2
GRIPEN fighter pilot’s working day – preparation day with gym

Conditioning effect

Strongest stress response

No recovery

stress response / calorie expenditure
Lifestyle assessment (own registration)

PULSE TREND and HRV in Low pressure Chamber (5 500 m VR flight)

Strongest stress response
No recovery

LPC run from 11:22, simulated ER from 11:37
(18 000 feet, hypoxia) descent to 3000 m, oxygen from 11:40
PULSE TREND and HRV in Low pressure Chamber (5 500 m VR flight)

Lifestyle assessment (own registration)

Intensive recovery ??

11:15

Strongest stress response

Body resources

Decline in body resources
ANS IMBALANCE - LOWEST VALUES – LARGER BURDEN

HR / HRV average during LPC flight

- **HR avg (bpm)**
- **HRV (RMSSD) avg (msec)**

Oxygenation
- **100% oxygen**

Hypocapnia
- **Hypoxia hangover?**
WHO WE REALLY NEED?

ROLAND GARIROS

„GAMER”

„MAVERICK”
CONCLUSIONS

1. continuous exhaustive military training flight missions or paratrooper’s jump sorties - *destabilized vegetative tone* with increased arousal and finally can lead to psychosomatic effects of fatigue or even burnout.

2. lifestyle assessment of pilot / experienced paratrooper - compare the *real burden caused by military mission* / (civil airline flights?) and regular military physical activity and the possible recovery after sorties. Individual reactions!

3. Combined effects of hypoxia and Virtual Reality flight can be studied in *ground-based simulation settings in barochamber* or the mental effort related to combined aeromedical psychometric test batteries can be monitorized as well.

4. AI (machine) vs MAN – who has the final decision? Real time monitoring and BIG DATA: HRV, + NIRS, + EEG